The PapC usher forms an oligomeric channel: implications for pilus biogenesis across the outer membrane.

نویسندگان

  • D G Thanassi
  • E T Saulino
  • M J Lombardo
  • R Roth
  • J Heuser
  • S J Hultgren
چکیده

Bacterial virulence factors are typically surface-associated or secreted molecules that in Gram-negative bacteria must cross the outer membrane (OM). Protein translocation across the bacterial OM is not well understood. To elucidate this process we studied P pilus biogenesis in Escherichia coli. We present high-resolution electron micrographs of the OM usher PapC and show that it forms an oligomeric complex containing a channel approximately 2 nm in diameter. This is large enough to accommodate pilus subunits or the linear tip fibrillum of the pilus but not large enough to accommodate the final 6.8-nm-wide helical pilus rod. We show that P pilus rods can be unraveled into linear fibers by incubation in 50% glycerol. Thus, they are likely to pass through the usher in this unwound form. Packaging of these fibers into their final helical structure would only occur outside the cell, a process that may drive outward growth of the pilus organelles. The usher complex appears to be similar to complexes formed by members of the PulD/pIV family of OM proteins, and thus these two protein families, previously thought to be unrelated, may share structural and functional homologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The usher N terminus is the initial targeting site for chaperone-subunit complexes and participates in subsequent pilus biogenesis events.

Pilus biogenesis on the surface of uropathogenic Escherichia coli requires the chaperone/usher pathway, a terminal branch of the general secretory pathway. In this pathway, periplasmic chaperone-subunit complexes target an outer membrane (OM) usher for subunit assembly into pili and secretion to the cell surface. The molecular mechanisms of protein secretion across the OM are not well understoo...

متن کامل

Bacterial outer membrane ushers contain distinct targeting and assembly domains for pilus biogenesis.

Biogenesis of a superfamily of surface structures by gram-negative bacteria requires the chaperone/usher pathway, a terminal branch of the general secretory pathway. In this pathway a periplasmic chaperone works together with an outer membrane usher to direct substrate folding, assembly, and secretion to the cell surface. We analyzed the structure and function of the PapC usher required for P p...

متن کامل

Structural homology between the C-terminal domain of the PapC usher and its plug.

P pili are extracellular appendages responsible for the targeting of uropathogenic Escherichia coli to the kidney. They are assembled by the chaperone-usher (CU) pathway of pilus biogenesis involving two proteins, the periplasmic chaperone PapD and the outer membrane assembly platform, PapC. Many aspects of the structural biology of the Pap CU pathway have been elucidated, except for the C-term...

متن کامل

The Role of Chaperone-subunit Usher Domain Interactions in the Mechanism of Bacterial Pilus Biogenesis Revealed by ESI-MS*

The PapC usher is a β-barrel outer membrane protein essential for assembly and secretion of P pili that are required for adhesion of pathogenic E. coli, which cause the development of pyelonephritis. Multiple protein subunits form the P pilus, the highly specific assembly of which is coordinated by the usher. Despite a wealth of structural knowledge, how the usher catalyzes subunit polymerizati...

متن کامل

Outer-membrane PapC molecular usher discriminately recognizes periplasmic chaperone-pilus subunit complexes.

P pili are highly ordered composite structures consisting of thin fibrillar tips joined end-to-end to rigid helical rods. The production of these virulence-associated structures requires a periplasmic chaperone (PapD) and an outer membrane protein (PapC) that is the prototype member of a newly recognized class of proteins that we have named "molecular ushers." Two in vitro assays showed that th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 6  شماره 

صفحات  -

تاریخ انتشار 1998